6,249 research outputs found

    Research in electrically supported vacuum gyroscope. Volume 1 - Summary Final report

    Get PDF
    Intent, results, and recommendations of research program for Electrically Supported Vacuum Gyroscope /ESVG

    Analysis of a cyclotron maser instability with application to space and laboratory plasmas

    Get PDF
    When a beam of electrons moves into an increasing magnetic field, conservation of the magnetic moment results in the formation of a crescent, or horseshoe shaped velocity distribution. The resultant horseshoe shaped velocity distribution has been shown to be unstable with respect to a cyclotron-maser type instability. This instability has been postulated as the mechanism responsible for auroral kilometric radiation and also non-thermal radiation from other astrophysical bodies. In this paper the previous theory, that assumed an infinite uniform plasma, is extended to apply to a bounded cylindrical geometry. This more exact theory in bounded cylindrical geometry is also directly relevant to a laboratory experiment currently being carried out

    Laser phase noise effects on the dynamics of optomechanical resonators

    Full text link
    We investigate theoretically the influence of laser phase noise on the cooling and heating of a generic cavity optomechanical system. We derive the back-action damping and heating rates and the mechanical frequency shift of the radiation pressure-driven oscillating mirror, and derive the minimum phonon occupation number for small laser linewidths. We find that in practice laser phase noise does not pose serious limitations to ground state cooling. We then consider the effects of laser phase noise in a parametric cavity driving scheme that minimizes the back-action heating of one of the quadratures of the mechanical oscillator motion. Laser linewidths narrow compared to the decay rate of the cavity field will not pose any problems in an experimental setting, but broader linewidths limit the practicality of this back-action evasion method.Comment: 9 pages, 7 figure

    A dangerous precedent indeed - a response to CR Snyman's note on Masiya

    Get PDF
    Masiya v Director of Public Prosecutions 2007 (5) SA 30 (CC) (hereafter Masiya) is inherently controversial. The facts of the case, the unlawful anal penetration of a 9-year-old girl, strike at the heart of our social fabric. The legal issues at stake, such as the principle of legality, the separation of powers and the Constitution, strike at the heart of our legal order. It is thus unsurprising that the judgment in Masiya has elicited critical commentary. This is a direct response to one such comment, C R Snyman's recent note 'Extending the scope of rape - A dangerous precedent' (2007) 124 SALJ 677 (hereafter 'Snyman'). Snyman addresses the following four issues in his note as they pertain to the judgment in Masiya : the principle of legality; separation of powers; the constitutionality of the common-law definition of rape; and whether the court was unduly swayed by emotional considerations. This comment refutes his stance and the reasoning employed in relation to each of these issues

    Viscoelastic response of fibroblasts to tension transmitted through adherens junctions

    Get PDF
    Cytoplasmic deformation was monitored by observing the displacements of 200-nm green fluorescent beads microinjected into the cytoplasm of Swiss 3T3 fibroblasts. We noted a novel protrusion of nonruffling cell margins that was accompanied by axial flow of beads and cytoplasmic vesicles as far as 50 microm behind the protruding plasma membrane. Fluorescent analog cytochemistry and immunofluorescence localization of F-actin, alpha-actinin, N-cadherin, and beta-catenin showed that the protruding margins of deforming cells were mechanically coupled to neighboring cells by adherens junctions. Observations suggested that protrusion resulted from passive linear deformation in response to tensile stress exerted by centripetal contraction of the neighboring cell. The time dependence of cytoplasmic strain calculated from the displacements of beads and vesicles was fit quantitatively by a Kelvin-Voight model for a viscoelastic solid with a mean limiting strain of 0.58 and a mean strain rate of 4.3 x 10(-3) s(-1). In rare instances, the deforming cell and its neighbor spontaneously became uncoupled, and recoil of the protruding margin was observed. The time dependence of strain during recoil also fit a Kelvin-Voight model with similar parameters, suggesting that the kinetics of deformation primarily reflect the mechanical properties of the deformed cell rather than the contractile properties of its neighbor. The existence of mechanical coupling between adjacent fibroblasts through adherens junctions and the viscoelastic responses of cells to tension transmitted directly from cell to cell are factors that must be taken into account to fully understand the role of fibroblasts in such biological processes as wound closure and extracellular matrix remodeling during tissue development

    Tunable Transient Decay Times in Nonlinear Systems: Application to Magnetic Precession

    Full text link
    The dynamical motion of the magnetization plays a key role in the properties of magnetic materials. If the magnetization is initially away from the equilibrium direction in a magnetic nanoparticle, it will precess at a natural frequency and, with some damping present, will decay to the equilibrium position in a short lifetime. Here we investigate a simple but important situation where a magnetic nanoparticle is driven non-resonantly by an oscillating magnetic field, not at the natural frequency. We find a surprising result that the lifetime of the transient motion is strongly tunable, by factors of over 10,000, by varying the amplitude of the driving field.Comment: EPL Preprin

    Wave propagation and tunneling through periodic structures

    Get PDF
    The phenomenon of tunneling manifests itself in nearly every field of physics. The ability to distinguish a wave tunneling through a barrier from one propagating is important for a number of applications. Here we explore the properties of the wave traveling through the band gap created by a lattice, either as a consequence of tunneling through the barrier or due to the presence of a pass band inside the gap. To observe the pass band for studying tunneling and propagating waves simultaneously, a localized lattice defect was introduced. The differences between the two phenomena are highlighted via waves' dispersion characteristics

    Studies of surface two-dimensional photonic band-gap structures

    Get PDF
    Two-dimensional (2D) surface photonic band-gap (SPBG) structures can be obtained by providing a shallow corrugation of the inner surface of a waveguide wall. It can be used as a distributed mirror, a cavity, or a filter in integrated optics or microwave electronics. These structures can also be an alternative to conventional 2D PBG or 1D Bragg structures. In this article, we present the results of theoretical and experimental studies of 2D SPBG structures. Data obtained from experiments are compared with theoretical results and good agreement between theory and experiment is demonstrated. Comparison of a coaxial 2D SPBG structure with a conventional 1D Bragg structure is also presented

    Theory and simulations of a gyrotron backward wave oscillator using a helical interaction waveguide

    Get PDF
    A gyrotron backward wave oscillator (gyro-BWO) with a helically corrugated interaction waveguide demonstrated its potential as a powerful microwave source with high efficiency and a wide frequency tuning range. This letter presents the theory describing the dispersion properties of such a waveguide and the linear beam-wave interaction. Numerical simulation results using the PIC code MAGIC were found to be in excellent agreement with the output measured from a gyro-BWO experiment
    corecore